
Argonne Leadership Computing Facility1 Argonne Leadership Computing Facility1

Using Openmp*
Effectively on Theta

Carlos Rosales-Fernandez & Ronald W Green
ron.green@intel.com
Intel Corporation
2019 ALCF Computational Performance Workshop

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

2

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR
A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of
Intel Corporation or its subsidiaries in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Overview

This talk is not intended to teach OpenMP*, but rather focus on using OpenMP
Effectively on Theta

§ Brief introduction OpenMP

§ OpenMP Affinity

§ [Optional based on time] Using OpenMP SIMD instructions

§ [Optional based on time] OpenMP tasking

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

What is OpenMP*?

OpenMP stands for Open Multi-Processing. It provides:

§ Standardized directive-based multi-language high-level parallelism.

§ Portable and Scalable model for shared-memory parallel programmers.

§ Language support for C/C++/FORTRAN.

§ Provides APIs and environment variables to control the execution of parallel regions.

§ Latest specs and examples are available at http://www.openmp.org/specifications/.

§ Supported by LLVM, Visual Studio Compiler, Intel Compiler, GNU GCC and others.

http://www.openmp.org/specifications/

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

OpenMP* Programming Model

Real world applications are a mix of serial and inherently parallel regions.

OpenMP* provides Fork-Join Parallelism as a means to exploit inherent parallelism in an
application within a shared memory architecture.

§ Master thread executes in serial mode until a parallel construct is encountered.

§ After the parallel region ends team threads synchronize and terminate, but master
continues.

Parallel Regions

Master
Thread

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

OpenMP Generalities
History of OpenMP starts in 1997/1998 with 1.0 Spec

Some very BROAD generalities

• 1.0 to 2.0 Parallel loops

• 3.0 added TASKS for more general parallel paradigms

• 4.0 added SIMD for controlling vectorization

• 4.0, 4.5, 5.0 OpenMP TARGET and MAP for accelerators

A true multi-tasker of a Specification

LOOPS/TASKS, VECTORIZATION, GPU Offload

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

OpenMP* Constructs

Parallel - thread creation

§ parallel

Work Sharing - work distribution among threads

§ do, for, sections, single

Data Sharing - variable treatment in parallel regions and serial/parallel transitions

§ shared, private

Synchronization - thread execution coordination

§ critical, atomic, barrier

Advanced Functionality

§ Tasking, SIMD, Affinity, Devices (offload)

Runtime functions and control

#pragma omp parallel
{

#pragma omp for
for(int i = 0; i < N; i++)
{

a[i] = b[i] + c[i];
}

}

Ba
si

c
Co

m
po

ne
nt

s

!$OMP PARALLEL
!$OMP DO
do i = 1, N

a(i) = b(i) + c(i);
end do

!$OMP END PARALLEL

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Coming SOON to Intel Compilers:
OpenMP offload to Intel GPUs, FPGAs (and CPUs)

!$omp target teams distribute parallel do map(to: v1, v2) map(from: v3) device(1)
do i=1,N

v2(i) = v2(i) * 2; !..do we need the updated v2 values later? (from: v2, v3)
v3(i) = v1(i) + v2(i);

end do
end subroutine vecadd

#pragma omp target data map (to: c[0:N], b[0:N]) map(tofrom: a[0:N])
#pragma omp target teams distribute parallel for
for (j=0; j<N; j++) {

a[j] = b[j] + delta*c[j];
}

Argonne Leadership Computing Facility11

Affinity with OpenMP

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Affinity – What is it, Why care?
• What: “Affinity” one of Processor affinity, memory affinity, cache affinity, even

CPU Binding all describe the act of binding of processes or threads to a specific
cpu or range of cpus to take advantage of hardware features: such as shared
caches, close proximity to memory controllers, etc.

• Why?

1. Binding – keep processes or threads from moving from 1 cpu to another

– Cache example: data in L1 Dcache on a cpu: you lose it if thread moved

– Allocate data on close mem controller, then thread gets migrated to
another socket

2. Ranks exchange boundary values with neighbors, want neighbor processes
close (same tile, socket, node, or neighbor nodes on switch fabric)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

OpenMP Binding
A mapping of OpenMP threads from ”thread pool” to LOGICAL PROCESSORS

OpenMP thread pool
OMP_NUM_THREADS

Proc 0 Proc 1 Proc N

HW T0 HW T1 HW Tn

Logical Processors
“Proc Set” or ”Proc List”
Set by combo of HW+BIOS (upper limit),

then OS, then Resource Manager

Hardware Threads aka
“Cores” or “Hyper-cores” or

“Thread Contexts” or
”Processing Elements”

One OpenMP Process
One MPI+OMP Rank

OpenMP Affinity

BIOS, OS, and Resource Mgr control – usually 1-1 mapping

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

OpenMP PLACE: The Processor Set
• A ”Node” has a number of “Packages or

Sockets” each of which has processor chip.

• Theta nodes have a single KNL / single-
socket

• The processor chip has a fixed # of CORES

• Theta has 64 KNL cores

• The CORE can be “hyper-threaded” or
allow 1-N number of HW Threads

• BIOS setting controls enable/disable

• KNL cores support 4 HW threads = 256
HW Threads

• The OS maps 1 “Logical Processor”
to each HW Thread

• Theta 256 Logical Processors

• Resource Manager carves out
allocations for processes and can
deliver a SUBSET of the available
Proc List call “PROC SET” or
“AFFINITY MASK”

• Per node, max PROC SET is 256
logical processors

• Actual AFFINITY MASK available to
OMP is controlled by
aprun –cc, -j -d arguments

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Controlling and Binding to Proc Set
• Two Methods – pick one and stick with it.

1. Use OpenMP Runtime to control placement of threads and binding

§ Advantage: Environment variables or API calls available on every vendor
platform – portable (mostly - mappings change of course but concept and
vars are the same.

2. Use the vendor’s Resource Manager and job launcher to control the PLACES
List (Processor Set) and binding

§ Advantage: Sets limits that cannot be exceeded – allows sharing of nodes
with multiple users. Keeps vendors and admins happy

§ Disadvantage: not portable, varies by resource manager and vendor –
constantly have to re-learn new clusters.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Method 1: Use OpenMP to Control Affinity
For pure OpenMP* based codes the most effective way to set affinity is to
disable affinity in aprun -cc none and then use OpenMP settings to bind
threads.

Disabling affinity with aprun is simple:

$ aprun -n 1 -N 1 -cc none ./exe

Now threads can be pinned to specific hardware resources using the
OMP_PLACES and OMP_PROC_BIND environmental variables.

Rich set of options with lots of flexibility and configuration granularity, but a few
simple setups cover the vast majority of production cases.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Thread Affinity in OpenMP*

OpenMP* 4.0 introduces the concept of Places and Policies
§ Set of threads running on one or more processors
§ Places can be defined by the user
§ Predefined places available: threads, cores, sockets
§ Predefined policies : spread, close, master

And means to control these settings
§ Environment variables OMP_PLACES and OMP_PROC_BIND
§ Clause proc_bind for parallel regions

Optimal settings depend on application and workload

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Pinning Step 1: OMP_PLACES

Two levels of granularity. You may specify a policy:

OMP_PLACES=<policy>

Where policy may be

§ sockets : threads are allowed to float on sockets (multiple cores)
§ cores : threads are allowed to float on cores (multiple logical processors)
§ threads : threads are bound to specific logical processors

Or you may specify a list:

OMP_PLACES={lower_bound:length:stride}:repeat:increment

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Pinning Step 2: OMP_PROC_BIND
OMP_PROC_BIND=<policy> Where policy must be chosen from:

§ close : threads placed consecutively, as near to the master place as possible

§ Best for possible cache reuse by nearby threads

§ spread : threads spread equally on hardware to use most resources

§ Best for threads that do not benefit from shared caches

§ master : threads placed on master place to enhance locality

§ Note: rarely if ever used, master can lead to heavy oversubscription of hardware
resources, depending on the defined places.

CONFIRM WHAT YOU’RE GETTING!

OMP_DISPLAY_AFFINITY=true or (Intel) KMP_AFFINITY=verbose

OMP_DISPLAY_ENV=true #displays OMP related env vars

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Logical Processor Mapping 64-core KNL Node

Core 0

Proc 0
Proc 64
Proc 128
Proc 192

Core 1

Proc 1
Proc 65
Proc 129
Proc 193

Core 15

Proc 15
Proc 79
Proc 143
Proc 207

Core 16

Proc 16
Proc 80
Proc 144
Proc 208

Core 17

Proc 17
Proc 81
Proc 145
Proc 209

Core 31

Proc 31
Proc 95
Proc 159
Proc 223

Core 32

Proc 32
Proc 96
Proc 160
Proc 224

Core 33

Proc 33
Proc 97
Proc 161
Proc 225

Core 47

Proc 47
Proc 111
Proc 175
Proc 239

Core 48

Proc 48
Proc 112
Proc 176
Proc 240

Core 49

Proc 49
Proc 113
Proc 177
Proc 241

Core 63

Proc 63
Proc 127
Proc 191
Proc 255

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Some examples
OMP_NUM_THREADS=4; OMP_PLACES=“{0:4:2}” #start, number, stride

Bound to [0] [2] [4] [6]

OMP_NUM_THREADS=4; OMP_PLACES=threads; OMP_PROC_BIND=close

Bound to [0] [64] [128] [192] – core 0 and it’s hyperthreads

OMP_NUM_THREADS=4; OMP_PLACES=threads; OMP_PROC_BIND=spread

Bound to [0] [16] [32] [48] – first core on each quadrant, no HT threads

OMP_NUM_THREADS=4; OMP_PLACES=cores; OMP_PROC_BIND=spread

Bound to [0,64,128,192] [16, 80, 144, 208] [32, 96, 160, 224] [48, 112, 176, 240]

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Method 2: Use Theta APRUN to control thread
binding and Proc Set. MPI example

aprun -n 4 -N 1 –cc depth -d 16 -j 1 –cc depth -e OMP_NUM_THREADS=16 <app> <app_args>

“-n 4" sets 4 MPI rank in total and "-N 1" places or 1 rank per node.

“-cc depth” use the depth arg and bind to that #HW threads

"-d 16" sets 16 hardware threads for each MPI rank

"-j 1" set 1 hardware thread per physical core.

"-e OMP_NUM_THREADS=16" sets the application to use 16 OpenMP threads per MPI rank

Argonne Leadership Computing Facility23

Want the Full Story on APRUN?

Attend our Hand—On coming very soon! Lots of examples
and of course …

https://www.alcf.anl.gov/user-guides/computational-systems#theta-(xc40)

but in PARTICULAR, this is one of the best pages on APRUN at any lab:
https://www.alcf.anl.gov/user-guides/affinity-cray-xc40

https://www.alcf.anl.gov/user-guides/computational-systems
https://www.alcf.anl.gov/user-guides/affinity-cray-xc40

Argonne Leadership Computing Facility24

Using Hyperthreads – does it help or hurt?

Yes, well it depends ….

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Hyperthreading – When it is Worthwhile?
• Where Hyperthreads do not help: if you code is FLOPS heavy, data

demand is light and lots of cache reuse. Something like this:
for (i=0, i< data-fits-in-cache ; i++){

a[i] = b[i] * func1(a[i]) – rhoPi*2.8754 ;
a[i] += b[i] / PI * (r*r) – (delta_t*accel);
b[i] = b[i] * MASS_DEN/4.00 + DELTA_RHO;

} #just a few vars, stride 1, good # of flops in loop

• Where Hyperthreads DO help – latency on data, light
flops/memory:
for (i=0 , i< data-huge ; i++){

a[index[i]] = b[index[i]] + 1.0;
} one flop, indirect memory access on A and B

CPU
BOUND,
No HT

MEMORY
LATENCY
BOUND,
Use HT

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

BUT the application is large, I inherited it, I don’t know if it’s CPU
or memory bound! Or it varies by phase of the simulation or
input. What do I do?

(is this your graduate advisor, PI, or
sponsor? Hopefully NOT!)

Don’t feel bad – it does vary by application; and by core counts, cpu
architecture, memory architecture, and changes over time.

GENERALLY if you use memory indirection or pointers to mesh neighbor cells
you PROBABLY have latency that can benefit from MODERN hypercores

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Hyperthreading on Theta

• Honest answer – WE HAVE NO CLUE if HT will benefit your code

• Try binding one thread per core

• Try binding 2 threads per core, then 3, then 4

• Side effects: you may change app behavior, as the threads usually
determine the data decomposition

• GENERALLY on KNL systems like Theta
1 or 2 threads per core is USUALLY sufficient. UNLESS every memory access
is indirect with little flops per memory fetch, low cache reuse, random
memory access patterns – try 3 or 4

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Can OpenMP Help?
• If threads stall on memory or other resources, what should the OpenMP

Runtime system do?

1. Spin wait on CPU, assuming the stall is short (example, cache line not
available immediately but fetch already in flight)

§ No HT, app CPU bound: Actively wait (spin) on the CPU until resource is
freed (memory comes in, goes out, cache line is loaded, etc)

§ OMP_WAIT_POLICY=ACTIVE

2. HT and long latency: Give up CPU, assume another thread has work and this
stall will be long, like fetching a[index[i]]

• OMP_WAIT_POLICY=PASSIVE

Argonne Leadership Computing Facility29

NUMA and Memory Considerations

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

NUMA considerations
Locality – reduce memory latency.

§ Use Linux first touch policy to your advantage by
initializing data in an OpenMP* loop in the same
way that it will be used later.

§ C/C++ Do NOT use calloc() !!
DDR4 DDR4

DDR4

DDR4

DDR4

DDR4

32
#pragma omp parallel for

for(i=0; i<FLOPS_ARRAY_SIZE;
i++)

{
fa[i] = (float)i + 0.1;
fb[i] = (float)i + 0.2;

}

!$omp parallel do
do i = 1, FLOPS_ARRAY_SIZE

fa(i) = i + 0.1
fb(i) = i + 0.2

end do
!$omp end parallel do

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

FLAT Model, Using MCDRAM the Easy Way
MCDRAM Provides higher bandwidth

§ Important to make a conscious choice if running on flat mode

If running on flat mode you may use numactl to attach to the numa node 1
(MCDRAM) :

1. Allocations in MCDRAM first, spill into DRAM
aprun -n <ntot> -N <ppn> numactl --preferred=1 ./exe

2. Allocations in MCDRAM, abort if exceed space in MCDRAM

aprun -n <ntot> -N <ppn> numactl --membind=1 ./exe

3. API library ”memkind” and “jemalloc” for more exact control

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Using MCDRAM API

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

1) Force data alignment on cache boundaries

2) TELL the compiler the data is aligned at use site

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Essential Step #1: Align Data, Fortran
Align the data at allocation …

-align array64byte
compiler option to align all array types

Works for dynamic, automatic and static arrays (not in
COMMON)
Align COMMON array on an “n”-byte boundary (n must
be a power of 2)

!dir$ attributes align:n :: array
36

n=64 MIC & AVX-512, n=32 for AVX AVX2, n=16 for older SSE
This equals L1 cache line size

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

And tell the compiler WHERE you use the data …

Prefer OpenMP SIMD directive:

!$omp SIMD aligned(list[:n])

Compiler can assume (list) arrays are aligned to n byte boundary
Old Intel-only directive. !dir$ vector aligned

Asks compiler to vectorize, overriding cost model, and assuming all array data
accessed in loop are aligned for targeted processor

• Haswell/Broadwell and newer may only generate unaligned loads/stores
• If data is aligned, unaligned load/store just as fast
• NOT true on older Xeons

Step: Fortran: Tell the compiler data is aligned

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Align Data C++
__declspec(align(n, [offset])) __attribute__((aligned(n)))
Instructs the compiler to create the variable so that it is aligned on an “n”-byte boundary, with an “offset” (Default=0) in
bytes from that boundary

struct S { short f[3]; } __attribute__ ((aligned (64)));

typedef int more_aligned_int __attribute__ ((aligned (64)));

void* _mm_malloc (int size, int n)
Replacement for malloc(), instructs the compiler to create a pointer to memory such that the pointer is aligned on an n-
byte boundary

OR use a memory allocator that can control alignment (such as in TBB)

and tell the compiler…

#pragma vector aligned | unaligned

Vectorize using aligned or unaligned loads and stores for vector accesses, overriding compiler’s cost model

__assume_aligned(a,n)
Instructs the compiler to assume that array a is aligned on an n-byte boundary

n=16 for SSE, n=32 for AVX, n=64 AVX512

Argonne Leadership Computing Facility39

MPI + OpenMP

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
40

When using hybrid applications aprun must be configured to create pinning ranges for
each MPI task, and then OpenMP variables may be set to control thread pinning within
each rank processor range. Example: 4 MPI tasks, 16 threads each, over 8 nodes

export OMP_NUM_THREADS=16
export OMP_PLACES=cores;
export OMP_PROC_BIND=spread
aprun -n 32 -N 4 -cc depth -d 64 -j 4 ./exe

MPI Rank Thread 0 Thread 1 … Thread 15

Rank 0 [0, 64, 128, 192] [1, 65, 129, 193] … [15, 79, 143, 207]

Rank 1 [16, 80, 144, 208] [17, 81, 145, 209] … [31, 95, 159, 223]

Rank 2 [32, 96, 160, 224] [33, 97, 161, 225] … [47, 111, 175, 239]

Rank 3 [48, 112, 176, 240] [49, 113, 177, 241] … [63, 127, 191, 255]

Hybrid MPI + OpenMP*

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
41

Recommended settings for Theta

The following setup is recommended for jobs using up to 4 threads per core
OMP_PLACES=cores

OMP_PROC_BIND=spread

aprun -n <totalTasks> -N <tasksPerNode> -cc depth -d 256/<tasksPerNode> -j 4

If using multiple threads per core you may want to test the effect of changing
the default wait policy to passive:
OMP_WAIT_POLICY=passive

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
42

Cluster Mode Considerations
”Cluster Mode” describes how page tables and cache coherency managed.
Three on-die cluster modes supported:

• all-to-all: 1 master table)

• Quadrant (QUAD): Default mode, better performance, tables distributed
over 4 tables with global coordination

• SNC-[4 | 2] (Sub-NUMA Clustering) 4 tables but no coordination – KNL
looks like 4 nodes in a sub-cluster RARELY USED IN PRACTICE

• WHY DO YOU CARE?

• On a QUAD node you get better performance with 1 MPI rank and threads
spread evenly into each quadrant “quadrants” [0..15] [16..31] [32..47]
[48..63]etc OR

• 4 MPI ranks OR multiples of 4 placed in the quads

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD – Single Instruction Multiple Data

A class of parallel computers in Flynn's taxonomy.

Systems with multiple processing elements (Pes) doing the same operation on multiple data points
simultaneously.

A form of data level parallelism: A single operation (instruction) directs the PEs to do the same operation
on multiple data elements (vector or array) simultaneously.

Vectorization:

A form of SIMD parallel programming

Generally refers to transformation of a serial program or application to exploit SIMD hardware resources

Although often used in the context of compiler techniques to “auto-vectorize” serial code to exploit SIMD
hardware, Vectorization is any programming method to exploit SIMD resources

Vectorization and SIMD Overview

https://en.wikipedia.org/wiki/Flynn's_taxonomy
https://en.wikipedia.org/wiki/Data_parallelism

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization is Achieved through SIMD Instructions &
Hardware

45

Intel® AVX-512 Announced in 2014
Vector size: 512bit
Data types: 32 and 64 bit floats
Other data types vary by part
(KNL 32 and 64bit Ints)
VL: 4, 8, 16, 32
Sample: Xi, Yi 32 bit int or float

X4

Y4

Z4

X3

Y3

Z3

X2

Y2

Z2

X1

Y1

Z1

127
X8

Y8

Z8

X7

Y7

Z7

X6

Y6

Z6

X5

Y5

Z5

128255
X12

Y12

Z12

X11

Y11

Z11

X10

Y10

Z10

X9

Y9

Z9

X16

Y16

Z16

X15

Y15

Z15

X14

Y14

Z14

X13

Y13

Z13

512

32bit
operands

Terminology:
SIMD “LANE” is a parallel slice of elements
used in a vector operation .
Think of this as similar to a multi-lane freeway

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Single Instruction Multiple Data (SIMD):

Hardware supported technique which allows an operation to be
performed on multiple data points simultaneously.

Provides data level parallelism (DLP) which is more efficient than
scalar processing

Vector:

Consists of more than one element

Elements are of same scalar data types
(e.g. floats, integers, …)

Vector length (VL):

Number of elements of the vector which are processed together

Vectorization

Process which converts procedural loops that iterate over multiple
pairs of data items and assigns a separate processing unit to
each pair

Terminology SIMD & Vectorization

Scalar
Processing

A B

C

+

Vector
Processing

Ci

+

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

VL

Ve
cto

r

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Exploiting SIMD

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ways to Vectorize Code

Easy, no controlWith the Compiler:
Auto-vectorization (no change of code)

Hard, full control

With the Compiler: Vendor vectorization
hints (#pragma vector)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic (e.g.: _mm_fmadd_pd(…),
_mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Explicit SIMD Programming
OpenMP SIMD (open standard)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Auto-Vectorization
for (i=0; i<=MAX; i++)

c[i] = a[i] + b[i];

…compiler rewrites as
for (i=0; i<=MAX; i+=8){

c[i] = a[i] + b[i];
c[i+1]=a[i+1]+ b[i+1];
c[i+2]=a[i+2]+ b[i+2];
c[i+3]=a[i+3]+ b[i+3];
c[i+4]=a[i+4]+ b[i+4];
c[i+5]=a[i+5]+ b[i+5];
c[i+6]=a[i+6]+ b[i+6];
c[i+7]=a[i+7]+ b[i+7];
}

Scalar
Processing

A B

C
+

+

c(i+7) c(i+6) c(i+5) c(i+4) c(i+3) c(i+2) c(i+1) c(i)

b(i+7)b(i+6)b(i+5)b(i+4)b(i+3)b(i+2)b(i+1) b(i)

a(i+7)a(i+6)a(i+5)a(i+4)a(i+3)a(i+2)a(i+1) a(i)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization - Potential for Performance

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legacy Processor-specific Compiler Switches
Intel processors only Intel and non-Intel (-m also GCC)

-xsse2 -msse2 (default)

-xsse3 -msse3

-xssse3 -mssse3
-xsse4.1 -msse4.1

-xsse4.2 -msse4.2

-xavx -xcore-avx2 -mavx
-xmic-avx512 -march=knl
-xHost -xHost (-march=native)

Intel cpuid check No cpu id check

Runtime message if run on
unsupported processor

Illegal instruction error if run on
unsupported processor

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Modern Processor-specific Compiler Switches
Intel processors only Intel and non-Intel (-m also GCC)

-xcommon-avx512*
-xcore-avx512*
-xskylake* -mskylake
-xskylake-avx512* -mskylake-avx512

-xicelake-client -micelake-client

-xicelake-server -micelake-server
-xcascadelake -mcascade-lake
-xHost -xHost (-march=native)

Intel cpuid check No cpu id check

Runtime message if run on unsupported processor Illegal instruction error if run on unsupported processor

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
54

Easier Naming in Recent Compilers
• To simplify (maybe), we added codenames to –x and –ax options. Version

18.0 compilers and newer. -x<name> -ax<name> where <name>:

BROADWELL
CANNONLAKE
HASWELL
ICELAKE-CLIENT (or ICELAKE)
ICELAKE-SERVER
IVYBRIDGE
KNL
KNM
SANDYBRIDGE
SILVERMONT
SKYLAKE
SKYLAKE-AVX512
MIC-AVX512

• Skylake and AVX512 options can be confusing.
• “common-avx512” is the base set of AVX512 instructions.
• “core-avx512” extends ”common” with additional instruction

sets for server grade processors.
• “skylake” is client version of Skylake, doesn’t have AVX512

• For Skylake servers, answer is “-xskylake-avx512 –qopt-
zmm-usage=high” for highest possible use of AVX512.

MIC-AVX512:
• May generate Intel(R) Advanced Vector Extensions 512

(Intel(R) AVX-512) Foundation instructions
• Intel(R) AVX-512 Conflict Detection instructions
• Intel(R) AVX-512 Exponential and Reciprocal instructions
• Intel(R) AVX-512 Prefetch instructions for Intel(R) processors
• and the instructions enabled with CORE-AVX2.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
55

KEY CONCEPTS or TAKE-AWAY
• Any of –x, -a, -march are SUGGESTIONS to compiler on MAXIMUM instruction

set it MAY USE

• Compiler may use lesser vectorization if it could be more efficient

• You can use either the Vector Extension name OR processor name
• -xsandybridge is same as –xavx

• -xhaswell is same as –xcore-avx2

• -xskylake-avx512 will often favor AVX2. For max AVX512 usage, use with:

• -xskylake-avx512 –qopt-zmm-usage=high

• -xicelake-server will favor AVX512 over AVX, no need for additional
option like Skylake needs

• “skylake” is for CLIENT processors which DO NOT have AVX512!

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use -x or -ax for best vectorization.

-axmic-avx512 -xavx
or

-axmic-avx512 -xcore-avx2
are good choices for KNL and
modern Xeon blended code
or

-xhost
“host” cannot be used with -ax
unfortunately

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
57

Non-Intel Compatible Processors
• Use –march compiler option for targeting

• No “codenames” for non-Intel processors. You have to know if it uses AVX2,
SSE3, etc and use those codes OR the equivalent Intel names

• With 2019 (19.0) Update 4 and older compilers you can only target 1
architecture with -march

• Currently no functionality like –ax option for non-Intel

• With future compilers released after 2019 Update 4 we add a new option:

Windows syntax: /Qauto-arch:<val> Linux syntax: -mauto-arch=<val>
‘val’ can be anything that is accepted by /arch on Windows or –march on Linux.

Similar as to ax, Qax this option tells the compiler to generate multiple, feature-specific auto-dispatch code paths for x86
architecture processors if there is a performance benefit. It also generates a baseline code path. Baseline code path used
depends on OS and platform. See the –ax option for the default baseline codepath used.

This option can not be used together with x, Qx, ax or Qax options.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization – More Switches and Directives

Disable vectorization
Globally via switch: {L&M}: -no-vec {W}: /Qvec-

For a single loop: directive !DIR$ novector
Disabling vectorization means not using packed SSE/AVX instructions.

The compiler still may use SSE instruction set extensions

Enforcing vectorization for a loop - overwriting the compiler heuristics :
!dir$ vector always
will enforce vectorization even if the compiler thinks it is not profitable to do so (e.g due to non-

unit strides or alignment issues)

It’s a SUGGESTION: Will not enforce vectorization if the compiler fails to recognize this as a
semantically correct transformation – hint to compiler to relax

!dir$ vector always assert
will print error message in case the loop cannot be vectorized and will abort compilation

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Auto-vectorization

Terrific! Use the right compiler options and we’re done, right?

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Easy: Auto-Vectorization, Let the Compiler do the Vectorization

Vectorizing DOES NOT
IMPLY PERFORMANCE!
Vectorized code
sometimes runs slower
than non-vectorized code.
AVX2 can run faster than
AVX512
Speed step (power), indirect addressing,
indexed (strided) addressing, and pointer
chasing are examples. Low trip counts
with peel and remainder loops also

https://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Requirements for Auto-Vectorization
Target: Innermost loops

Collapse to outermost IF perfectly-nested loop(s)

AVOID

Loop-carried dependencies

No early loop exits, no branches into loop (no throw/catch)

Data-dependent loop exit conditions

User Function/subroutine calls

Non-contiguous and poorly aligned data
Inefficient memory accesses often tagged ‘not profitable’

POINTERS (Fortran too!) are pure evil, use sparingly

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

There are many, many reasons the compiler will
refuse to vectorize a loop

Job #1 of a compiler is to create CORRECT ie SAFE code

Performance is secondary

Compilers will always assume the worse case scenario of your code

KNOW what your compiler is DOING,
and WHY – Optimization Reports!!!

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

When Does the Compiler Auto-Vectorize a Loop?
Intel ifort/icc/icpc

By default, at -O2 and above

Can disable by -no-vec

Get report with -qopt-report[0-5] (start with –qopt-report5)

GCC

At -O3

With -O2 -ftree-vectorize

Get report with -ftree-vectorizer-verbose=[0-7] (gcc ≤ 4.8) -fopt-info-vec (gcc ³ 4.9)

Cray

-h vector[0-3] 0=only F90 array syntax, 1=conservative, no loop xforms
2=moderate: loop restructuring (Default for Cray –O2+)
3=aggressive

Get report with: ftn -rm, CC –hlist=m

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Did my loop vectorize?
Simplest:

ifort -c -qopt-report5 ../../snb/addit.f90

addit.f90(17): (col. 2) remark: LOOP WAS VECTORIZED.

You can also recognize Intel® SSE registers and packed instructions in the assembly code: (…pd
for doubles, …ps for floats)

ifort –S addit.f90; grep addpd addit.s

addpd (%rsi,%rax,8), %xmm0 (Intel® SSE)

vaddpd (%rsi,%rax,8), %xmm0, %xmm1 (Intel® AVX -128)

vaddpd (%rsi,%rax,8), %ymm0, %ymm1 (Intel AVX -256)

Or calls to the Short Vector Math Library (libsvml):

call __svml_sin2 (Intel SSE) (2 doubles per call)

call __svml_sin4 (Intel AVX) (4 doubles per call)

call __svml_expf8 (Intel AVX) (8 floats per call)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Applicable to Intel® Compiler version 15.0 and newer

• for C, C++ and Fortran

• for Windows*, Linux* and OS X*

Main options (there are a lot of qopt-report-* options):
-qopt-report[=N] (Linux and OS X)
/Qopt-report[:N] (Windows)

N = 1-5 for increasing levels of detail, (default N=2)
-qopt-report-phase=str[,str1,…]

str = loop, par, vec, openmp, ipo, pgo, cg, offload, tcollect, all
-qopt-report-file=[stdout | stderr | filename]

65

Did it Vectorize? Optimization Report

(For readability, options may not be repeated for each OS where spellings
are similar. Options apply to all three OS unless otherwise stated.)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

[-q|/Q]opt-report-phase=vec [-q|/Q]opt-report=N

N specifies the level of detail; default N=2 if N omitted

Level 0: No vectorization report

Level 1: Reports when vectorization has occurred.

Level 2: Adds diagnostics why vectorization did not occur.

Level 3: Adds vectorization loop summary diagnostics.

Level 4: Additional detail, e.g. on data alignment

Level 5: Adds detailed data dependency information

66

Vectorization – report levels

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Output goes to a text file by default

• File extension is .optrpt, root name same as object file’s

• One report file per object file, in object directory

• created from scratch or overwritten (no appending)

[-q | /Q]opt-report-file:stderr gives to stderr

:filename to change default file name

/Qopt-report-format:vs format for Visual Studio* IDE

For debug builds, (-g on Linux* or OS X*, /Zi on Windows*),
assembly code and object files contain loop optimization info

• /Qopt-report-embed to enable this for non-debug builds

67

Report Output

Guiding the compiler with directives

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Controlling, Guiding Vectorization
Vendors provide a hodge-podge, vendor-specific pragmas and Fortran
directives to guide vectorization

No standards, no cooperation between vendors (IVDEP is an exception)

OpenMP 4 Standardized a set of SIMD directives

Based on OMP Parallel directives

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel Compiler Provided Directives
!DIR$ directives

§ IVDEP ignore vector dependency

§ LOOP COUNT advise typical iteration count(s)

§ UNROLL suggest loop unroll factor

§ DISTRIBUTE POINT advise where to split loop

§ VECTOR vectorization hints

– Aligned assume data is aligned

– Always override cost model

– Nontemporal advise use of streaming stores

§ NOVECTOR do not vectorize

§ NOFUSION do not fuse loops

§ INLINE/FORCEINLINE invite/require function inlining

§ SIMD explicit vector programming (see later)

Use where needed to help the compiler.

Remember, these are Intel-compiler specific!

We recommend the newer OpenMP 4 SIMD
directives for many of these

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit or Guided Vector Programming with OpenMP
4.0 and above
Modeled on OpenMP for threading (explicit
parallel programming)
Enables reliable vectorization of complex loops that the compiler can’t auto-vectorize

E.g. Possible dependency, inefficient, reduction variables

Directives are commands to the compiler, not hints

Programmer is responsible for correctness (like OpenMP threading)
E.g. PRIVATE and REDUCTION clauses

Incorporated in OpenMP 4.0 Þ portable

Intel -qopenmp or –qopenmp-simd to enable

GCC support in version 4.9.0+ (C/C++), gfortran 4.9.1

Needs -fopenmp or -fopenmp-simd

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel

-qopenmp

Recognizes OpenMP Parallel and SIMD directives

-qopenmp-parallel

Recognizes OpenMP Parallel directives

Ignores OpenMP SIMD directives

-qopenmp-simd

Recognizes OpenMP SIMD directives

Ignores OpenMP Parallel directives

Similar for GNU –fopenmp[-simd|-parallel]

No compiler option? Ignores ALL OpenMP directives

OpenMP Compiler Options

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization is Data Parallelism, Blocks of Vector Length

73

X4

Y4

Z4

X3

Y3

Z3

X2

Y2

Z2

X1

Y1

Z1

127
X8

Y8

Z8

X7

Y7

Z7

X6

Y6

Z6

X5

Y5

Z5

128255
X12

Y12

Z12

X11

Y11

Z11

X10

Y10

Z10

X9

Y9

Z9

X16

Y16

Z16

X15

Y15

Z15

X14

Y14

Z14

X13

Y13

Z13

512

32bit
operands

Terminology:
SIMD “LANE” is a parallel slice of elements
used in a vector operation .
Think of this as similar to a multi-lane freeway

Vector Dependence:
Does THIS LANE
need data or affect
data from/in another
LANE?

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Clauses for OMP SIMD directives
The programmer (i.e. you!) is responsible for correctness

• Just like for race conditions in loops with OpenMP threading

Available clauses : #pragma omp or !$omp simd <clauses>
• PRIVATE

• FIRSTPRIVATE

• LASTPRIVATE like OpenMP for threading

• REDUCTION

• COLLAPSE (for nested loops)

• LINEAR (additional induction variables)

• SAFELEN (max iterations that can be executed concurrently)

• ALIGNED (tells compiler about data alignment)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Data Sharing Clauses

private(var-list):
Uninitialized vectors for variables in var-list – allocate register for X, no initial value in each SIMD
lane

firstprivate(var-list):
Initialized vectors for variable(s), each SIMD lane gets initial value

reduction(op:var-list):
Create private variables for var-list and apply reduction operator op at the end of the construct

42x: ? ? ? ?

42x: 42 42 42 42

42x:12 5 8 17

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD Loop Clauses
aligned (list[:alignment])

• Specifies that the list items have a given alignment
• Default is alignment for the architecture

linear (list[:linear-step])
• The variable’s value is in relationship with the iteration number

xi = xorig + i * linear-step

safelen (length)

• Maximum number of iterations that can run concurrently without breaking a
dependence

• in practice, set to the number of elements in the vector length
collapse (n)

• Collapse perfectly-nested loops into a single iteration space (loop) and vectorize

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
77

safelen(vector size) Example safelen(8)

a(i) a(i+1) a(i+2) a(i+3) a(i+4) a(i+5) a(i+6) a(i+7)

a(i+Y) a(i+Y+1) a(i+Y+2) a(i+Y+3) a(i+Y+4) a(i+Y+5) a(i+Y+6) a(i+Y+7)

What this expression inside a vectorized loop:
do/for i=0,N-1
a(i) = a(i + Y) * expr

Y >= 0 is safe: a(i) = a(existing a value)
Y < 0 dangerous: like a(i) = a(i-1) * expression

Order dependence: have to compute a(i-1) before a(i)
BUT…
If Y < 0 and Y<= -8 and vector len is 8 then
a(i) = a(i-8) * expression

a(i-8) was computed already in previous vector

expr expr expr expr expr expr expr expr
*

= stored in a(i)s this iteration

*

a(i-8)s last iteration

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD loop example
subroutine mypi(count, pi)

integer, intent(in) :: count

real , intent(out):: pi=0
real :: t
integer :: i

!$omp simd private(t) reduction(+:pi)

do i=1, count

t = ((i+0.5)/count)

pi = pi + 4.0/(1.0+t*t)

end do

pi = pi/count

end subroutine mypi

78

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What About User Functions/Subroutines?

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

User function/subroutine calls inside loops break
vectorization

Procedures may introduce loop carry dependencies

Procedures may have side effects, may need specific serial
loop ordering

Compiler defaults to SAFE non-vector code

Exception: intrinsic functions, Intel Fortran provides vector-
safe versions that are automatically substituted

• -lib-inline (default) -nolib-inline

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorized Math Intrinsics

acos ceil fabs round

acosh cos floor sin

asin cosh fmax sinh
asinh erf fmin sqrt

atan erfc log tan
atan2 erfinv log10 tanh

atanh exp log2 trunc

cbrt exp2 pow

Also float versions,
such as sinf() and Fortran
equivalents

Random Numbers

C/C++: drand48()

Fortran: random_number()

●Calls to most mathematical functions in a loop are vectorized using vectorized replacement Library”:
-Intel Short Vector Math Library (libsvml) provides vectorized implementations of different mathematical
functions. Similar for Cray, GNU, etc.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Concept of SIMD Functions
OMP 4: Allows use of scalar syntax to describe an operation on a single element

Applies operation to arrays in parallel, utilizing vector parallelism (process array elements in
blocks of vector length)

The programmer:

Writes a standard procedure with a scalar syntax

Call the procedure with scalar arguments (no change in syntax for the call)

Annotates procedure at definition with
!$omp declare SIMD <function, clauses>

At procedure call site, alert the compiler to look for a SIMD version of the procedure
!$omp simd <clauses>

The compiler:

Generates a short vector version, and a serial version

Invokes the vector version in vectorizable regions, serial otherwise

82

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD procedures: Syntax

!$omp declare simd (function-or-procedure-name) [clauses]

Instructs the compiler to

generate a SIMD-enabled version(s) of a given procedure (subroutine or
function)

that a SIMD-enabled version procedure is available to use from a SIMD
loop

83

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD functions: clauses
simdlen(length)

generate function to support a given vector length

uniform(argument-list)

argument has a constant value (invariant for all invocations of the procedure in the calling loop)

inbranch

function always called from inside an if statement

notinbranch

function never called from inside an if statement

linear(argument-list[:linear-step])

aligned(argument-list[:alignment])

reduction(operator:list)

84

Similar to annotations
used on loop vars, only
applied to arguments

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Fortran Example
c We integrate the function:

c f(x) = 4/(1+x**2)

c between the limits x=0 and x=1. The result approximates the value of pi.

c The integration method is the n-point rectangle quadrature rule.

program computepi
integer n, i
double precision sum, pi, x, h, f
real start, finish
external f

n = 1000000000
h = 1.0/n
sum = 0.0

call cpu_time(start)
do 10 i = 1,n

x = h*(i-0.5)
sum = sum + f(x)

10 continue
pi = h*sum

double precision function
f(x)

double precision x
f = (4/(1+x*x))
end

ifort -O2 -xhost -c fx.f
ifort -O2 -xhost -vec-report3 pi.f fx.o

pi.f(25): (col. 17) remark: routine skipped:
no vectorization candidates.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: VECTOR function
program computepi
integer n, i
double precision sum, pi, x, h
real start, finish

interface
double precision function f(x)

!$omp declare simd f
double precision x
end

end interface

n = 1000000000
h = 1.0/n
sum = 0.0

call cpu_time(start)
!$omp simd reduction(+:sum) private(x)

do 10 i = 1,n
x = h*(i-0.5)
sum = sum + f(x)

10 continue
pi = h*sum

!$omp declare simd f
double precision function

f(x)
double precision x

f = (4/(1+x*x))
end

ifort -O2 -xhost -c fx2.f
ifort -O2 -xhost -vec-report3 pi2.f fx2.o

pi2.f(43): (col. 12) remark: SIMD LOOP
WAS VECTORIZED

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: module function
program computepi
use func_f
integer n, i
double precision sum, pi, x, h
real start, finish

n = 1000000000
h = 1.0/n
sum = 0.0

call cpu_time(start)
!$omp simd reduction(+:sum) private(x)

do 10 i = 1,n
x = h*(i-0.5)
sum = sum + f(x)

10 continue
pi = h*sum

module func_f

contains
!$omp declare simd f
function f(x)
real(8) :: f
real(8) :: x
f = (4/(1+x*x))

end function
end module func_f

ifort -O2 -xhost -c fx3.f
ifort -O2 -xhost -vec-report3 pi3.f fx3.o

pi2.f(43): (col. 12) remark: SIMD LOOP
WAS VECTORIZED

module USE brings in the VECTOR attribute and definition of function ‘f’

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP parallel and SIMD
Yes you can nest OMP SIMD inside OMP Parallel directives
Parallel directives at same or outer loop level
SIMD inside parallel region

!$omp parallel DO simd ….
do i=1 , MAX

end do

!$omp parallel do <clauses>

do cells=1, NUMCELLS

!$omp simd <clauses>

do parts=1, NUMPARTSCELL

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

proc-name must not be a generic name, procedure pointer or entry
name.

Any declare simd directive must appear in a specification part of a
subroutine subprogram, function subprogram or interface body to
which it applies.

If a declare simd directive is specified in an interface block for a
procedure, it must match a declare simd directive in the definition of
the procedure.

If a procedure is declared via a procedure declaration statement, the
procedure proc-name should appear in the same specification.

89

Restrictions on Fortran SIMD procedures

Argonne Leadership Computing Facility90

Thank You!

Please Attend Our Hands-On
Lab Following Immediately

Argonne Leadership Computing Facility91

BACKUP and OPTIONAL MATERIAL

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
93

Some Background

Prior to standard version 3.0, OpenMP* was focused exclusively on Data
Parallelism, distributing work over threads executing the same code.

This work sharing model presented some limitations

§ A need for a known loop count

§ Very limited ability for dynamic scheduling

§ Inconvenient for naturally task-parallel problems (dependencies, nesting)

Task parallelism constructs were introduced to complement the already
existing set that supported data parallelism

Task parallelism is particularly useful in irregular computing

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
94

What is an OpenMP* Task?

From the standard document: “specific instance of executable code and its data
environment”

§ Explicit task: work generated by the task construct

§ Implicit task: threads of a parallel region

In this section of the talk I will be only discussing explicit tasks.

By default tasks are deferrable, so the generating thread may execute it
immediately or queue it

#pragma omp task
myfunc();

#pragma omp task
for(int i = 0; i < N; i++){ … }

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
95

Sibling tasks

The taskwait construct can be used to wait
for deferred task completion at some point
in the code

Nested tasks

Synchronizing siblings and their
descendants requires a taskgroup

Task Synchronization

#pragma omp task
myfunc();

#pragma omp task
for(int i = 0; i < N; i++){ … }

#pragma omp taskwait

#pragma omp taskgroup
{
#pragma omp task
myfunc();

#pragma omp task
{
for(int i = 0; i < N; i++){

#pragma omp task
nestedfunc();

}
}

}

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
96

Often an application can be decomposed into
tasks which can execute simultaneously.

Following the Directed Acyclic Graph (DAG)
shown on the right:

§ Tasks A, B and C can start executing
simultaneously.

§ Task C can only be executed after A and B
complete execution.

§ Task E can only be executed after C and D
complete execution.

Task Decomposition

a = A();
b = B();
c = C(a,b);
d = D();
printf("%f\n", E(c,d));

A B

C D

E

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
97

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
a = A();
#pragma omp task
b = B();
#pragma omp task
d = D();

}
}
c = C(a, b);
printf ("%f\n", E(c,d));

Parallel Execution of Tasks

Start parallel region, forking N threads

Use a single thread to generate the tasks

Each independent code section may be defined as a task

Once generated, each task may be
performed by any available thread
in the parallel region

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 98

Task Generation and Execution

1. Threads are spawned from master

2. Work queue is generated by single thread

generate
tasks

3. Tasks in queue are assigned to threads and executed

Task Queue
§ task 1
§ task 2
§ task 3

generate
tasks

task 1

task 2

Task Queue
§ task 1
§ task 2
§ task 3

4. Process continues until queue is empty (or sync point)

Task Queue
§ task 1
§ task 2
§ task 3

generate
tasks

task 1 task 3

task 2

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
99

#pragma omp parallel
{

#pragma omp single
{
#pragma omp task depend(out:a)
a = A();
#pragma omp task depend(out:b)
b = B();
#pragma omp task depend(out:d)
d = D();
#pragma omp task depend(in:a,b) depend(out:c)
c = C(a, b);
#pragma omp task depend(in:c,d)
printf ("%f\n", E(c,d));

}
}

depend clause allows to specify
dependencies among tasks

depend(<in|out|inout>:<variables>)

Based on dependences C() can start
executing once A() and B() are done.

Using the depend clause makes it
possible to execute C() and D()
simultaneously

Better Scheduling with Depend Clause

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
100

void merge_sort_openmp(int a[], int tmp[], int first, int last)
{
if (first < last) {
int middle = (first + last + 1) / 2;
if (last - first < 5000) {
merge_sort(a, tmp, first, middle - 1);
merge_sort(a, tmp, middle, last);

} else {
#pragma omp task
merge_sort_openmp(a, tmp, first, middle – 1);
#pragma omp task
merge_sort_openmp(a, tmp, middle, last);
#pragma omp taskwait

}
merge(a, tmp, first, middle, last);

}
}

Merge sort is common recursive
algorithm

§ Its recursive nature used to pose a
challenge in terms of expressing the
parallelism.

§ OpenMP* Tasking helps express the
parallelism in recursive calls as shown
below.

§ Explicit taskwait synchronization
forces a wait until all sibling tasks
complete execution.

§ Merging phase can’t start until all the
tasks spawned above have completed.

Parallelize Recursions

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
101

Other Interesting Tasking Tidbits

Tasks can be stopped and continued (at scheduling points). By default tasks are
tied so they can only be continued by the same thread that started them (hot
cache). This behavior can be overridden with the untied clause

#pragma omp task untied

You may introduce your own scheduling points using the taskyield directive
#pragma omp taskyield

The taskloop directive may be used to schedule loop iterations as independent
tasks with a single generator (Intel® Compiler version 18+)

#pragma omp taskloop [[grainsize|numtask] [untied] [nogroups]
[priority]]

for(i = 0; i < N; i++){ …}

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
102

Tasking Summary

Introduced to enable task-parallelism in shared memory architectures

Mostly used in irregular computing

Tasks are typically generated by a single thread

Dependencies can be specified to improve scheduling efficiency

Untied task generators can ensure progress

First-private is default data-sharing attribute

Shared variables remain shared

